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Convection in boxes: experiments 
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(Received 11 February 1972) 

Convective motions in rectangular boxes with one side horizontal have been 
studied. The critical Rayleigh numbers were determined. In  most cases cell 
patterns with rolls parallel to the shorter side wall of the rectangular box were 
observed. The results have been compared with the known theoretical results of 
Davis (1967). In  general, good agreement has been found. 

1. Introduction 
The influence of lateral walls on the onset of convection in horizontal fluid 

layers heated from below has been repeatedly subjected to theoretical investi- 
gation in recent years. Pellew & Southwell (1940) and Zierep (1963) have already 
pointed out the dependence of the critical Rayleigh number on the lateral 
boundaries in heated fluids. By simplifying the boundary conditions on the 
lateral walls, i.e. by assuming slip flow, Zierep (1963) first calculated the influence 
of the walls. Davis (1967) gave a detailed theoretical investigation of the relevant 
linear stability problem for convection in boxes of rectangular shape. In  order to 
gain reliable results, even for boxes of small aspect ratio, all boundaries were 
considered to be rigid and perfect heat conductors, i.e. the disturbances in 
velocity and temperature caused by convection are assumed to vanish at the 
walls. The latter assumption ensures that the temperature distribution in the 
lateral walls remains linear in the vertical direction even after the onset of con- 
vection. Such boundary conditions, however, exclude a presentation of the 
solution in analytical form as such a solution is usually obtained by separation of 
variables. Davis applied a Galerkin method to the linearized equations of con- 
vection. It is known that Galerkin’s method is an approximation method and 
consequently yields only approximate critical Rayleigh numbers (upper bounds) 
and eigenfunctions. The trial functions used in Davis’ calculations are confined 
to forms approximating convection rolls with only two velocity components 
dependent on three space variables. However, Davis has shown that more 
general convection patterns such as polygonal cells can be described by super- 
posing finite convection rolls of perpendicular direction. It turns out in the case of 
lateral side walls that convection-roll systems with the minimum critical Rayleigh 
number are seIected out of such superpositions. Only if the critical Rayleigh 
numbers of the two different roll systems are equal or nearly equal will more 
sophisticated selection processes (such as disturbances of finite amplitude or 
variations of properties) become dominant (see Segel 1969). 

Although the results of Davis (1967) were extended in further articles by 
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Segel (1969) and Davies-Jones (1971) and were recalculated by Catton (1970), 
they still represent the basic theoretical results for convective flow in rectangular 
boxes. Therefore we quote them here. 

‘The results obtained for boxes with a width-to-depth ratio h/d in the range 
t < h/d 6 6 are. the following. 

(i) The preferred mode is always some number of finite rolls (two non-zero 
velocity components dependent on three spatial variables) with axes parallel to 
the short side (square boxes excepted). 

(ii) When the depth is the smallest dimension, finite rolls of near-square cross- 
section are predicted. Otherwise narrower finite rolls appear. 

(iii) The critical Rayleigh number decreases rapidly to the value 1708 as the 
horizontal dimensions increase so that most experiments, which use thin layers, 
would appear to have onset occur at  about Ra, = 1708.’ 

To the authors’ knowledge, no detailed experimental investigation of con- 
vective flow in rectangular vessels heated from below has yet been performed. 
The experiments reported here are aimed at verifying the theoretical results 
known so far. As the experiments described comply largely with the assumptions 
of Davis (1967) the results are especially suitable for comparison with his results. 
Therefore, throughout this paper, we have adopted his notation which is as 
follows. If rectangular boxes are fixed in a rectangular co-ordinate system in such 
a way that the axes coincide with three edges, then convection rolls parallel to 
the y axis are termed finite x-rolls and those parallel to the x axis finite y-rolls. 

2. Experimental set up and technique 
A standard constant-temperature plate apparatus like that used by Kosch- 

mieder (1966) was employed for the experiments. A schematic diagram of this is 
given in figure 1. The apparatus is axisymmetric about its vertical axis. The 
fluid (a) was enclosed between a 10mm thick copper disk ( b )  of 200mm diameter 
and a 3 mm thick glass disk ( c ) .  The distance between the plates was 10 mm for 
all experiments. Both plates could be maintained at  a constant temperature by 
circulating fluid from controlled baths below or above the plates respectively. 
Cooling or heating fluid was fed into the system at several points, uniformly 
distributed on the circumference, to ensure as uniform a temperature distribu- 
tion as possible. The apparatus was designed such that the fluid was easily 
accessible by separating the upper container (d )  together with the glass plate 
from the lower section ( e ) .  The glass and copper plates were maintained parallel 
and at the fixed distance of IOmm by three spacers of equal size. Rectangular 
frames of different sizes were located in the test volume. These frames were 
designed so that two walls could be shifted parallel to each other while the others 
were held at definite distances. Convection was investigated in the rectangular 
volume formed by the frame and the upper and lower plates. Pour ferro- 
constantan thermocouples of 0.5 mm diameter were used to determine two 
temperature differences between the upper and lower boundaries of the fluid 
layer. The thermocouples were attached to the plates near the side walls. The 
potential difference was measured by a digital voltmeter ( IpV E 1.9 x “C) 
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FIGURE 1. Schematic section of the apparatus. 

and simultaneously recorded on a chart recorder during the long runs. Bayer 
silicon oil M300 was used as a test fluid, aluminium powder being added as a 
tracer. The silicon oil had the following properties: 

p = 0.994-8-97 x 10-4t (g cm-3), 

v = 590exp ( -  09017t) (cm?s-l), 

h = 0.1416- 10-4t(kcalm-1h-1grad-1), 

p = 8.97 x lO-"(grad-l), 

c = 0.36 (kcal kg-lgrad-I), 

wherep is the density, v the kinematic viscosity, h the thermal conductivity, /3 the 
coefficient of thermal expansion and c the specific heat. Because the measure- 
ments were taken for a relatively large range of temperature differences the 
variation of p, v and h with temperature had to be considered; in the above 
relations t is the temperature in degrees Celsius. 

For the determination of the critical temperature difference between upper 
and lower plates two independent methods were applied. The first is based on the 
visualization of the convection pattern with aluminium particles. At first 
particles which were at  first randomly orientated moved in preferred directions 
even under very low shear flow. On a dark background (the copper plate was 
covered with black paintt) visible light and dark contrasts developed soon after 
convection started. If any such regularities were observed the temperature 
differences between top and bottom were registered. As the heating of the fluid 
was for long periods (1-3 h, quasi-static heating) the critical temperature could 
be estimated with reasonable accuracy. This method has proved to be very 
reliable. The second method uses the time history of the temperature difference 
on an automatic recorder. The start of convection can be noticed in this case by 

t The paint film was very thin so that the uniform temperature distribution was not 
disturbed. 
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a kink in the temperature-time plot. Generally the convection started near the 
central area of the test volume, as the heating process was slightly unsteady, 
and the effect of the frictional resistance at the side walls was smallest in the 
centre. Since the thermocouples were fixed near the side walls, to keep the wiring 
influences as small as possible, they registered the start of convection later than 
could be observed optically. The second method therefore gave critical Rayleigh 
numbers which were, on the average, 5 % above those gained by optical observa- 
tion. All values plotted in this article were determined by the first method. 
Recording the temperature difference was used only for cross checking. 

Using the above described apparatus and techniques, the following test series 
were performed. For constant ratios of the height d to h,, the length of one side 
wall (h,/d = 6 ,5 ,4 ,3 ,2 )  the length h, of the other side wall was varied from 0.5d 
to 6d in small increments of 0.2d.t For the above frames, as well as all square 
frames, the critical Rayleigh number, the number of cells and the cell shape were 
determined. 

3. Some comments on thermal boundary and initial conditions 
Davis assumes in his linear theory that all surrounding walls of the test volume 

are perfect heat conductors. Such conditions cannot be realized in experiments 
employing visualization techniques because transparent materials are generally 
poor heat conductors. In  our experiments crystal glass, the best transparent heat 
conductor available, was chosen as the upper plate. If a good heat conductor like 
copper is taken as the material for the side walls then horizontal temperature 
gradients form in the glass where the copper and glass join. These cause higher 
temperatures in the copper walls than in the adjacent liquid and, therefore, 
undesirable convection flow near the heated vertical planes occurs. The above 
effect was observed t o  occur at  Rayleigh numbers far below the expected critical 
one for uniform boundary conditions. In  this case only one convection roll 
developed along the side walls. This obvious difficulty was overcome in the 
following way. For the side walls a material was chosen whose thermal con- 
ductivity was as near as possible to the heat conductivity of the fluid. A suitable 
material is a P.V.C. product from BASF with a heat conductivity of 

0.126 kcal m-, h-,grad-l 

(for 0 < t < 60 "C) (compared with a h = 0.140 kcal m-l h-l grad-l for t % 20 "C 
of the silicon oil). This combination of materials prevents an uneven heating of 
the fluid and the side walls, and an essentially linear vertical temperature distri- 
bution is maintained if the thermoconvection is of small amplitude. This condi- 
tion holds at  the critical point, which is essentially the condition of interest. It 
may be expected that the temperature disturbance at the side walls is negligible. 
However, we should be aware of the partly insulating character of the side walls 
due to the relatively poor heat conductivity of P.V.C. Hence we are in fact 
dealing with mixed boundary conditions as far as temperature and heat con- 
duction are concerned, though the insulating effect is not as important. 

t For simplicity we shall henceforth refer to the width-to-depth ratios as h, and h,. 
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FIGURE 2. Temperature profiles caused by slowly increasing the 
temperature a t  the lower side of the layer. 

As with many other investigations on cellular convection the article of Davis 
refers to the marginal stability case. The question of how this state is finally 
reached is not dealt with. Every experimental investigation, however, is faced 
with the problem of achieving this steady state, since the mode initiating this 
condition might be important, with the h a 1  steady state dependent on the 
initial conditions. In  our case these initial conditions are provided basically by 
the heating process. Because it was intended here to investigate the influence of 
the lateral walls, the heating process was performed slowly to ensure that the 
influence of the walls dominates the disturbances caused by the unsteady heating 
and conduction processes. Longer heating times are required when the ratio of 
the side-wall length to the depth of the layer is increased. If an initial critical 
temperature difference is assumed, a simple calculation gives rise times of about 
7 min for the development of a linear temperature profile (see Carslaw & Jaeger 
1959, for instance). Of course, the heating time has to be much greater if the 
heating is to be quasi-steady and the temperature profile (see figure 2) is to be 
linear at all times. In  the experiments described here the heating times varied 
between 1 and 3h. However, when the distances between the side walls were 
comparatively large, polygonal cells formed in the centre of the test volume in 
spite of the long heating times. These convection cells, once formed, were so 
stable that even supercritical heating could not alter their shape. The question 
arose at  this point of whether a change in the initial conditions could generate 
Convection flows of roll shape as predicted by Davis. Therefore the initial 
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FIGURE 3. Tempemture profiles caused by slowly increasing the temperature at  the 
lower side and lowering it at the upper side of the layer. 

conditions were changed in the following way. First, the critical state (onset of 
convection) was established by slow heating. At this stage theupper part (a) of the 
apparatus (cooling section, see figure 1)  was removed. The fluid was then brought 
to a uniform temperature T, by careful stirring. After this procedure the upper 
and lower parts were fixed together again. During the whole procedure the 
temperatures of the heating and cooling fluidin the lower and upper systems were 
kept constant. The steady state of linear temperature distribution was then 
reached by a compensation process as sketched in figure 3. After a few minutes, 
in most cases, a pattern of convection rolls was observed and was stable even 
under supercritical heating conditions. Systems of different convection patterns 
appeared if the frames were of square or nearly square shape. 

4. Evaluation of the measurements and error analysis 
The critical Rayleigh number was calculated according to the relation 

Ra, = gpAT,d3cp/hv, 

where g is the acceleration of gravity, /3 is the coefficient of thermal expansion of 
the liquid, AT, is the critical temperature difference between upper and lower 
plate, d is the layer thickness, h the thermal oonductivity, v the kinematic 
viscosity, c the specific heat and p the density. The quantities p, h and v are 
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generally dependent on the local temperature. The values at an average tempera- 
ture T = &T,+ T,)? were then used to evaluate the Rayleigh number. 

The crucial point in the present investigation was the measurement of the 
critical temperature difference. This measurement contains two basic sources of 
errors. Random errors due to inaccuracies in calibrating the thermocouples and 
reading the digital voltmeter, and inaccuracies in the thermocouples and the 
associated circuitry amounted to about 2 yo of the total critical temperature 
difference. A systematic error of at  most 5 % of AT, is attributed to the optical 
method by which the onset of convection was determined. (A 5 yo difference in 
AT, occurred on the average when an optical observation rather than the chart 
recorder was used for measuring AT,.) 

Another systematic error of at most 0.5% was caused by the fact that the 
thermocouples were attached to the surface of the upper and lower plate rather 
than being contained in the plates. Next in importance for the accuracy in the 
measurement of the temperature is the maintenance of a definite layer thickness, 
because the Rayleigh number depends on the third power of the layer thickness. 
The error was less than 1 o/o owing to the spacers being of guaranteed length 
d = 10 0.01 mm. The uncertainties in the values used for the material pro- 
perties were presumably of the following orders: for viscosity Avlu % 0.5 %, for 
specific heat Ac/c% 1 yo, for density A p / p z  0 . 5 %  and for the coefficient of 
thermal expansion A/3//3 M 2 %. Thus this error analysis shows that the critical 
Rayleigh number may contain estimable random errors up to a maximum of 7 yo. 
However, the different errors will in general at  least partly compensate each other, 
so that actually the experimental error is less. The systematic error in the tem- 
perature measurement of 5 yo must be considered ab an upper limit as the optical 
method gives critical temperature differences which are possibly too low while, on 
the other hand, the chart recorder gives values which are too high. 

5. Results and discussions 
5.1. The critical Rayleigh numbers 

Thequantitative results of the present investigation canbeseeninfigures 4 (u)-(e). 
The critical Rayleigh numbers Ru, are plotted versus the width-to-depth ratio h,, 
with h, fixed. From these figures it can be stated that for small h, the critical 
Rayleigh numbers show a sharp drop with increasing values of h,, i.e. with 
increasing horizontal dimension of the box. In  all cases considered the Rayleigh 
numbers reach at an h, of about 2 a nearly constant value of about 2000, which 
is fairly near to the value of 1708 for thin liquid layers not confined by side walls. 
For comparison the theoretical results of Davis and some values from Catton’s 
(1970) calculations are recorded. It is clear from the figures that the experimental 
values are generally below the theoretical ones. The following more detailed 
trends can be noticed. 

Within one series of tests (h, = constant) the discrepancies between theoretical 
and experimental results increase as the box becomes narrower (small h,), 

T, = temperature at the upper plate; T, = temperature at  the lower plate. 
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FIGURE 4. Critical Rayleigh number Ra, versus h,. Theory: -, Davis; A, Catton. 
0, experimental results. (a) h, = 2. ( b )  h, = 3. (c) h, = 4. (d) h, = 5. ( e )  h, = 6. 

Especially for h, < 1 the differences may become as large as one third of the 
calculated Rayleighnumbers. An additional decrease in h,enlarges thedifferences. 
There are indications that test series for which the ratio h, is odd exhibit for 
h, < h, greater discrepancies than those for which h, is even (compare, for 
instance, figure 4(a )  with figure 4 ( b ) ,  or figure 4 ( b )  with figure 4 ( c ) ) .  The last 
statement reflects the observed phenomenon that the development of an even 
number of convection rolls is preferred to the formation of an odd number. This 
phenomenon will be discussed later. The discrepancies between the experimental 
and the theoretical curves are partly caused by the f a d  that a Galerkin method 
(or Ritz method) gives only upper bounds when Ra, is calculated using this 
method. Further on in his article Davies-Jones (1971) proves that finite rolls 
aligned perpendicular to one side wall, as was assumed by Davis, are not exact 
solutions of the linearized convection problem. Using roll-like trial functions he 
gains a satisfactory approximation to the true solution, but the approximate 
values are always above the exact solution. These statements essentially explain 
the discrepancies in the graphs for ratio h, greater than about 1.5 if in addition 
the error analysis of Q 4 is considered. The large discrepancies (up to 30 %) in the 
region of steep slope of the curves in figures 4 (a)-(e) (h, < 1.5) have a different 
cause. The insufficient observance of the thermal boundary condition (partly 
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insulating side walls) influences the results increasingly if the distance between 
the side walls decreases. Calculations of Davies-Jones (1971) show that, in the 
case of insulated side walls, the Rayleigh numbers are below those in the case of 
conducting side walls. The difference is considerable in the range h, < 1.5 (for 
instance, for h, = 1 ARaJRa, z 40 yo). The discrepancies between theory and 
experiment in this range are therefore evident. 

It is, however, of interest to state that disturbances of finite amplitude cannot 
contribute to the discrepancies between theory and experiment. As Joseph (1965) 
has proved, the critical Rayleigh numbers cannot be lowered by increasing the 
disturbance amplitude. It is clear that during the heating process temperature 
disturbances of finite amplitude are present. 

The kinks in the curves calculated by Davis (1967) (solid lines in figures 4 (a)-(e)) 
and caused by convection arrangements of different numbers of rolls could not 
be exhibited by these experiments since this characteristic of the curves is on a 
scale within the margin of error. 

5.2. Shape and number of cells 

Figures 5-7 (plates 1-3) show convection cells in the final steady state near to 
the critical conditions. The two most typical formation processes of convection 
patterns are presented in figures 8 and 9 (plate 4). From figure 8 it can be seen that 
the convection starts by forming annular type or strongly bent rolls. Such pheno- 
mena were observed in all experiments except in cases of very small rectangular 
boxes (h, < 1). With increasing time the circular convection cells decay and the 
remaining parts orient themselves more and more to be parallel to the shorter 
side wall, forming patterns as predicted by Davis. The rolls nearest to the side 
walls, however, remain bent under the influence of the corners. 

Completely different from this type of development is the formation of cell 
patterns in figure 9. Almost at the beginning of the convection the final sym- 
metric pattern appears, and becomes more pronounced with increasing time. 
These symmetric cell systems proved to be very stable even if the heating was 
continued to highly supercritical conditions. Only by changing the heating 
process itself, i.e. changing the initial conditions as was described in 3 3, could 
convection patterns according to Davis’s theory, in some cases, be generated. In  
the following we shall discuss the different test series in more detail. 

Test series 1 (h, = 2). In  all experiments finite rolls appear and are parallel to 
the shorter side walls. The arrangement of cells in the case of a square frame can 
be interpreted as an indifferent combination of both x- and y-rolls (see figure 5). 
On considering the numbers of rolls in 5 of a total of 30 performed experiments, 
a difference of one cell was found. This can be seen from figure 10, where all 
experiments are listed in a h,-h, plot and the areas of different cell numbers are 
separated by lines predicted by theory. The phenomenon can easily be explained. 
In  the marginal area between two different numbers of cells the critical Rayleigh 
numbers are so close together that both states can be reached only if the distur- 
bances are intensive enough at  the onset of convection. As the theory predicts, 
one of these states is less stable, but the experiments show that if once established 
both configurations are of considerable stability and even supercritical heating 



Plate I 

FIGIJRE 5. Convection cells in roctangnlar boxes \\-itJi /tl = 2.0.  ( a )  h, = 0.6, 2 finite z-rolls. 
(b) hZ = 1-1,  2 fir1it.e z-rolls. ( c )  h, = 2.0, coiribirrnt,iotl of z- arid y-rolls. (a) h, = 2.9, 
3 finite y-rolls. ( e )  h, = 3.9, 4 finite y-tvlls. (f) h,  = 4.5, 4 finite y-rolls. (9)  h, = 4.7, 
4 finite y-rolls. (?A) h, = 5.1, 5 finite !/-rolls, ( i )  h ,  = 5.7, 6 finite y-rolls. ( j )  h, = 6.0, 
(i finite y-rolls. 

STORK A N I ~  McLLER ( F a c i n g  p .  608) 
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FIGURE 7 .  C'oiivckctioir wlls in rectangular hoxc~s uith h, = 5.0. ( a )  h ,  = 0.9, 5 finite 
x-rolls. ( b )  h, = 1.5, 5 finite x-rolls. ( c )  h ,  = 1.9, 5 firiitc n-rolls. ( d )  h2 = 2 . 7 ,  5 finite 
x-rolls. ( e )  h, = 3.7, 5 finite z-rolls. ( f )  h, = 4.7, syrnrnetrtcal arrangements of convection 
cells. ( 9 )  h2 = 5.1, symmetrical .irrailgc.tnent~ of convection cells. (h)  h, = 5.5, 5 y-rolls 
with small disturbances. ( i )  h, = 5.7, 5 I i n t t c .  y-rolls. ( j )  lt2 = 5.9, 6 finite y-rolls. 

STORK AXD MULLER 



EIICITI~F:  8. Four y-rolls a t  rltffwcnt stagrs of development in R box m i t h  h ,  = 3 . 0 .  hLz = 4.5. 
( a )  0nst.t of corrvecatlori at thc critical Rayleigh number. ( b )  l?ormat~un of tho rolls 5 inin 
aftcr (a ) .  ( c )  h’orrnation of thr rolls 10  min after (a ) .  ( d )  Formation of the rolls 15 inin 
after ( a ) .  

F i c ; [ i i m  9. Syrnmotrrcal arrangemerit of convcctioii cells a t  diff’creiit stages of df.1 rlopinc.iit 
1 1 1  n ))ox with h ,  = 4.0, h ,  = 4.6. (a )  Onset of convection at thc critical Kaylcigh rriimtwr.. 
( b )  F o r r i i n t i o n  5 min aftclr ( n ) .  (c) Forrnation 10rninafter ( a ) .  ( r l )  Formation 15 m i t i  after ( a ) .  
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FICITJRE 10. Map of preferredwavenumber (given by numbers between the solid lines) of finite 
rolls as a function of h1 and h,. The figure is symmetric with respect to the line h, = h,. 
Finite s-rolls are preferred below the line h1 = h, and finite y-rolls above. Characteristics of 
experimental results: 0, agreement between theory and experiments ; 03y,  three finite 
y-rolls form, agreement incell shape, no agreement in the number of cells ; A, experimental 
results are comparable with the theoretical results but disturbances of the cell shape 
occurred; A, no agreement between experiments end theory (see $3). 

will not induce a decay into the more stable state as predicted by theoretical 
results. 

Test series 2 (h, = 3). Theoretical and experimental results agree completely 
(see figure 10). 

Test series 3 (h, = 4). The experiments with h, = 4-9 and 12, = 5.5 exhibit 
irregularities. According to the theory five cells are to be expected. However, as 
the next series will show more clearly, the odd cell number five occupies a special 
position. Another discrepancy was realized in the marginal area of 4 and 5 possible 
rolls, where h, < 1. Accordingly, the explanation given above for test series 1 
holds in this case (see figure 6). 

Test series 4 (h, = 5). It can be seen from figure 10 that for h, 2 3 in the 
majority of cases the five rolls expected did not appear. Rather, the following 
phenomena were observed. Symmetrically shaped cell arrangements formed (see 

39 B-LM 54 
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figure 7 (f)), rolls developed parallel to thediagonal of the rectangular frame (see 
figure 7 (g)), or slightly inclined rolls formed so that one of the rolls may only be 
partly developed (see figure 7 (h)).  The question therefore arises as to how this 
unexpected phenomenon can be explained. When performing the experiments 
it was generally observed that at first an even number of rolls parallel to the 
shorter side wall or other symmetric arrangements formed. Only after some time 
did another roll develop under the influence of the side walls or did the symmetric 
patterns orient themselves to finite rolls. This could be observed also in test 
series 2, in which systems of three as well as of five finite rolls were observed. In  
test series 4, however, the influence of the side walls is considerably smaller than 
in test series 2, meaning that a transformation from a symmetric pattern to finite 
rolls is prevented by disturbances of stronger influence than the side walls. It 
should be noted that the variations of the liquid properties with temperature 
can be of considerable influence. Segel (1969) has pointed out in his article (see 
his figure 4) that such variations are expected to dominate the lateral wall effects 
for large aspect ratios when roll-like or even polygonal cell shapes are preferred. 
Another important disturbance might be caused in the following way. In case of 
an odd number of finite rolls the number of upward-and downward-directed 
flow areas is odd. In  particular, there is upward flow near the one of the two side 
walls which is parallel to the finite rolls and downward flow near the other. When 
the walls are not perfect heat conductors, temperature differences between the 
side walls may induce horizontal temperature gradients and affect convection 
flow to a large extent. It is known (see Koschmieder 1966; Muller 1966) that 
cellular convection can be strongly influenced by convection flow circulating 
over long distances. 

Test series 5 (h, = 6). The experiments give an even number of finite rolls (see 
figure 10) according to theory. If the frame forming the side wall is of nearly 
square shape irregularities appear because the influence caused by the different 
lengths of the side walls is too small. Here we hint at  another phenomenon which 
appeared generally in all experiments. The axis of the finite rolls near the side 
walls was bent towards the interior of the test volume; this means that the 
corners exert a strong influence. This phenomenon is not described by Davis’ 
(1967) theory. It can be explained partly by the fact that finite rolls are not 
exact solutions of the linear problem (see Davies-Jones 1971) and partly by the 
imprecise thermal boundary conditions. 

6. Concluding remarks 
The most evident result of these experiments is the dependency of the critical 

Rayleigh number on the horizontal extension of the boxes. As the horizontal 
dimensions increase this number approaches rapidly the value of 1708, at which 
the onset of convection starts in thin horizontal layers heated from below. The 
second result is the proof that finite convection rolls form parallel to the shorter 
side wall of the box in the majority of cases. The numbers of finite rolls were in 
general such multiples of the layer heights that rolls of nearly squared cross- 
sections appeared. Only in case of very narrow boxes with hl < 1, where the 
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depth is not the smallest dimension, did rolls of cross-sections smaller than a 
square form. The reason is that the more restrictive no-slip condition increases 
the viscous dissipation. Therefore more potential energy must be released by the 
upthrust of the particles to sustain the convection, and this is achieved by the 
formation of narrower cells. When the boxes were of square or nearly square 
shape, i.e. h, w h2, symmetric convection patterns were observed whose develop- 
ment can be considered as a state of equilibrium between rolls tending to align 
parallel to different side walls. 

All the above observations are in good agreement with the theoretical results 
of Davis (1967). Discrepancies can be explained largely by taking into con- 
sideration the results of Davies-Jones (1971) for insulating rather than perfect 
heat-conducting boundaries. However, no theoretical results are known which 
might explain satisfactorily the phenomenon that the formation of an even 
number of finite rolls was preferred to the development of an odd number. As 
was reported in 0 5.2, this phenomenon could be observed in several cases (see 
figure 10). However, it is felt that more detailed experimental and theoretical 
investigations of this behaviour are necessary before the phenomenon can be 
adequately explained. 
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